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ABSTRACT

Designdata are given in the form of curves of the normalized parameters for the exact
design of uniformly dissipative, doubly terminated bandpass and lowpass filters with
Butterworth, Chebyshev, or Bessel transfer functions having two, three, four, or five
poles. For the Chebyshev filters, pass=band ripples of 0.001, 0.01, 0.03, 0.10,
0.30, and 1.0dB are included. Curves are also given for gain, phase, group delay,

and transient response, most of which are not readily available elsewhere.

A complete theoretical development of the design is given, and the solution for the
five~pole case is apparently new. Multiple solutions for the design paremeters are
discussed in the light of modern network synthesis, and the correspondence between

the two is established.
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THEORY AND DESIGN DATA FOR UNIFORMLY DISSIPATIVE,
DOUBLY TERMINATED BANDPASS AND LOWPASS FILTERS

I. INTRODUCTION

In the design of frequency selective filters, it is often necessary to take into account the
parasitic dissipation of the reactive components which will be used to realize the filter. In this
report, we present design parameters for filters having Butterworth, Chebyshev, and Bessel
transfer functions for a specific, but quite useful, distribution of parasitic dissipation. The
particular case considered is that in which all circuit elements are assumed to have the same
value of unloaded Q (such a circuit is said to be uniformly lossy). The resulting designs are
most useful for the design of narrow bandpass filters realized as a cascade of coupled resonant
circuits; here the uniformly lossy assumption reduces to that of equal Q for each of the coupled
resonant circuits. However, the design parameters apply equally well to the realization of low-
pass and wide bandpass filters. In all cases the design is based on a normalized, equivalent,
lowpass filter.

For each of the filter characteristics, design parameters are given for filters having two
through five poles. In the case of Chebyshev filters, pass-band ripples of 0.004, 0.01, 0.03,
0.10, 0.30, and 1.0 dB are included.

In addition to the design data, normalized gain curves are given from which one can calculate
the magnitude of the transfer function of each filter at the center frequency. Useful characteris-
tics of the normalized, lowpass filters are also presented, including plots of unit impulse and
unit step response and attenuation, phase, and group delay. From the impulse and step responses,
the envelope of the corresponding responses of a narrow bandpass filter can be determined.

The data available previously for the design of bandpass or lowpass filters fall into two
categories:

(a) Lossless design with resistive source and load or with a resistive
termination at one end only, and

(b) Uniformly lossy design with a resistive termination at one end only.

Such data can be found in Refs. 1 through 11, To the author's knowledge, these are the first pub-
lished data for the design of dissipative filters with resistive source and load.

The remainder of this report is organized as follows. In Sec.II, the normalizations used
for the Butterworth, Chebyshev, and Bessel lowpass transfer functions are outlined, and the
frequency and time responses mentioned above are presented graphically. Section III is a guide
to the design data and their application. Design parameters are defined and related to the circuit
element values for specific filter realizations. Frequency transformations that convert a band-

pass or a lowpass filter into an equivalent normalized lowpass filter and gain normalizations




are discussed. Use of the design data to realize a specific filter is illustrated by means of an
example. The design data are presented in Sec. IV.

In Appendix A filter alignment techniques are discussed, and in Appendix B the various
circuits used to realize the filters are analyzed and their transfer functions are derived. A few
intermediate results are believed to be new, although the final results are not. The design param-
eters arise naturally in the course of the work.

Appendix C presents solutions for the design parameters in terms of the denominator poly-
nomial coefficients of the desired transfer function. The methods used to solve the design prob-
lem are those of Dishal12 and Wagner,13 but the solution for a five-pole transfer function appar-
ently is new. These solutions are the basis for the design curves presented in this report and
can also be used for the design of filters with other transfer functions. To realize a given trans-
fer function, it is possible to have more than one set of values of the design parameters. An
alternate viewpoint for these multiple solutions is obtained from modern network synthesis, and
some previously unobserved solutions for Bessel transfer functions are pointed out.

Numerous checks of the data given here against those in Refs. 1, 2, and 5 have been made,
and no disagreement has been found. This checks, of course, only those areas in which there
is overlap between the data presented here and those given in the references. As further verifica-
tion, the data were spot-checked at many points to see that the required transfer function re-
sulted. Also, many filters have been designed successfully using these data.




II. NORMALIZED TRANSFER FUNCTIONS

In this section we define the normalized, lowpass Butterworth, Chebyshev, and Bessel
transfer functions that are the basis of the design data, and we explain the bandwidth factor w
which is used in the transformation of the actual frequency w = 27f to the normalized frequency
Q. For the convenience of the designer, curves of attenuation, phase, and group delay as well
as unit impulse and unit step response are given for these transfer functions.

A. TRANSFER FUNCTIONS

As is conventional for Butterworth filters, the lowpass transfer function has a half-power

frequency of 1 rad/sec, and the squared magnitude of the transfer function is

2 1
ltgutiol = o (2-1)

1+Q
The parameter n, the number of poles, specifies a particular Butterworth transfer function
which we will designate by the notation BU n. Thus, BU 4 refers to a four-pole Butterworth
transfer function. This notation is an adaptation of that used by Saal6 for Cauer parameter
filters. The transfer function is

I -
tau™ = g (2-2)

where Q (A) = AP+ qn_i)\n-i

of Qn(A) are given in Tables I and II.
For Chebyshev characteristics the lowpass transfer function has equal-ripple behavior out

54 6 o qik + qq, and qq = 1 for this case. The zeros and coefficients

to 41 rad/sec, and the squared magnitude of its transfer function is

1

2
topli®) © = ——— (2-3)
CcH 1+ ¢ 12q)
n
Here Tn(Q) is the Chebyshev polynomial of the first kind of degree n
cos(n cos~! Q) |, |e]<1
T Q) = (2-4)
n

cosh(n cosh~? Q) , |a| =1

TABLE |
POLES OF BUTTERWORTH TRANSFER FUNCTION [Zeros of Qn(k)]

n=2 n=3 n=4 n=5
—0.70711 £i 0.70711 | —1.00000 —0.92388 + i 0.38268 | —1.00000
~0.50000 + i 0.86603 | —0.38268 +i 0.92388 | —0.80902 + i 0.58779
—0.30902 + i 0.95106




TABLE 11
COEFFICIENTS OF Q,(N) FOR A BUTTERWORTH
TRANSFER FUNCTION

_ 4N n-1
Qn(x)-)\ +qn_]>\ +...+q])\+1

n 9 9 3 %

2 1.414214

3 2.000000 2.000000

4 2.613126 3.414214 2.613126

5 3.236068 5.236068 5.236068 3.236068

and the peak-to-peak ripple ¥ in decibels is

y =10 log({1 + €2) . (2-5)

A particular Chebyshev transfer function is specified by two parameters n and ¥ {or €), and will
be designated by the notation CH n —7y. Thus, CH 5 —0.03 refers to a five-pole Chebyshev trans-
fer function whose ripple is 0,03 dB. A Chebyshev transfer function is

tCH('X) 3 (2-6)

_1

T e QM)

The zeros of Qn(k) and its coefficients are given in Tables III through V.
Bessel filters are characterized by having a group delay that approximates 1 second in a

maximally flat sense. The transfer function is

ooy <zt 1 o
BE™ “on ¥, T Q™

(2-7)

where yn(A) = hnwn(i/h) and wn(x) is a Bessel polynomial. The zeros and coefficients of this
Qn(l) are given in Tables VI and VII. The transfer function is thus completely specified by the
parameter n; both the bandwidth and the band over which the time delay is substantially constant
increases with n. We will designate a particular characteristic by the notation BE n. Thus,
BE 3 refers to a three-pole Bessel transfer function.

For a full discussion of the characteristics of these three transfer functions see Chap. 11 of
Weinberg's book7 and the references cited there.

B. BANDWIDTH

Assume that a bandpass filter is required to have a bandwidth Woe = 21rBa rad/sec between
the points at which the transmission is a o dB below its peak value. If the reference lowpass
transfer function is o dB below its peak value at a frequency of 8, rad/sec, then

w = 27b = Wa/ﬁa = ZwBa/ﬂa . (2-8)




TABLE |l1

POLES OF CHEBYSHEV TRANSFER FUNCTION [Zeros of Qn()\)]

Y
(d8)

n=3

n=4

n=5

n=6

0.001

—1.22315 + i 2.28873
—2.44630

—0.59185 + i 1.70152
—1.42885 + i 0.70479

—-0.35194 £ i 1.44144
—0.92139 + i 0.89086
—1.13890

—0.23457 + i 1.30361
—0.64086 + i 0.95431
—0.87543 £ i 0.34930

0.01

—2,22777 +i 2.33729

—0.79469 £ i 1.62622
—1.58937

—0.41087 + i 1.35553
=0.99192 £ i 0.56148

—0.25251 +i 1.22820
—0.66109 + i 0.75907
—-0.81715

—0.17147 +i 1.15867
—0.46845 +i 0.84820
—0.63992 + i 0.31046

0.03

—1.66227 =i 1.80642

—0.63517 i 1.4001
—1.27034

—0.33740 + i 1.23169
—0.81455 + i 0.51018

—0.21011 +i 1.15007
—0.55007 +£i 0.71078
-0.67992

—0.14372 +£i 1.10486
—0.39265 + i 0.80881
—0.53638 + i 0.29605

0.10

—1.18618 +i 1.38095

—0.48470 + i 1.20616
—0.96941

—0.26416 +i 1.12261
—0.63773 + i 0.46500

—0.16653 + i 1.08037
—0.43599 + i 0.66771
—0.5389N

—0.11469 +i 1.05652
—0.31335 £ 0.77343
—0.42804 + i 0.28309

0.30

—0.84716 i 1.10348

—0.36464 +1 1.07186
—0.72928

—0.20260 + i 1.04536
—0.48912 £ i 0.43300

—0.12890 + i 1.03048
—0.33746 + i 0.63687
-0.41713

—0.08922 +i 1.02171
—0.24376 + i 0.74794
—0.33298 +i 0.27377

1.0

—0.54887 +i 0.89513

—0.24709 + i 0. 96600
—0.49417

—0.13954 +i 0.98338
—0.33687 + i 0.40733

—0.08946 + i 0.99011
—0.23421 £ 0.61192
—0.28949

—0.06218 + i 0.99341
—0.16988 + i 0.72723
—0.23206 +i 0.26618




TABLE IV
NUMERICAL COEFFICIENTS OF Qn()\) FOR A CHEBYSHEV TRANSFER FUNCTION

-1

_ 4N n
Qn()\)—)\ +qn_])\ +o..4 q])\+qo
! q q q q q
(dB) n 0 1 2 3 4
0.001 16.474307 12.718804 4.892607
8.238102 12.279242 9.166493 4.041409

5 4.118577 9.553635 11. 068605 8.041646 3.685552
0.01 2 10. 425865 4,455534

3 5.206934 5.802197 3.178741

4 2.606466 5.047686 4,935622 2.805574

S 1.301734 3.709816 5.248800 4,746274 2.644343
0.03 2 6.026308 3.324547

3 3.002764 3.977509 2.540673

4 1.506577 3.280243 3.653977 2.303%900

5 0.750691 2.357258 3.635990 3.670604 2.200275
0.10 2 3.314036 2.372356

3 1.638050 2.629494 1.938811

4 0.828509 2.025500 2.626798 1.803772

5 0.409513 1.435558 2.396959 2.770704 1.743963
0.30 2 1.935344 1.694311

8 0.934821 1.813691 1.458555

4 0.483836 1.282057 1.956934 1.383426

5 0.233705 0. 919769 1.600987 2.161058 1.349858
1.0 2 1.102510 1.097734

3 0.491307 1.238409 0.988341

4 0.275628 0.742619 1.453925 0.952811

5 0.1228267 0.580534 0. 974396 1.688816 0. 936820




TABLE V
EXPLICIT COEFFICIENTS OF Qn()\) FOR A CHEBYSHEV TRANSFER FUNCTION

_ 4N n-1
Qn()\)—)\ +qn_] A +,.,+ql)\+qo

n Coefficients

2 qo='l/2+sinh2¢ 0 q]=ﬁsinh¢

3 q0=(3/4+sinh2¢)sinh<p » 9,=3/4+2sich¢ , q,=2sinh¢

4 qo=l/8+sinh2¢+sinh4cp , o9 =22 +V2) (l-

+ sinh2 tp) sinh ¢
2V2

= V22 +V2)sinh ¢

q =|+(2+\/§)sinh2<p s

- 3

5 9 = (sinh4 ¢+5/4 sinh2 ¢ +5/16) sinh ¢

5+3\/_

—(l+\/_)smh ¢+ (——— slnh2¢+5/'|6

5+3\/—

(3+\/—)smh ¢+ ( )smhq>

q3=(3+\/§) sinh24>+5/4
q4=(l+\/§)sinh¢

where
0 =1/nsinh 1/e = 1/n coth™! (1020

and

=101log (1 + €2)
A general and simpler expression for 9 is

12! , nodd

Vi+ ez/eZn_l , neven

%




TABLE VI
POLES OF BESSEL TRANSFER FUNCTION (Zeros of Qn()\)]

n=2

n=3

n=4

n=5

—1.50000 + i 0. 86603

=2.32219
—1.83891 £i 1.75438

—2.89621 +i 0.86723
—2.10379 £ i 2.65742

—3.64674
-3.35196 £ i 1. 74266
—2.32467 £ i 3.57102

TABLE VII

COEFFICIENTS OF Qp(N FOR A BESSEL
TRANSFER FUNCTION

=1

_ 4N n
Qn()\)_k +qn-l)‘ +°"+ql)‘+q0
n 9% 9 9% 93 9%
2 3 3
3 15 15 6
4 105 105 45 10
5 945 945 420 105 15
TABLE VIl

HALF-POWER BANDWIDTH OF CHEBYSHEV TRANSFER FUNCTIONS, Bs

~ 111
By= cosh (; cosh :-) rad/sec

Ripple, y
(dB)

n=2 n=3 n=4 n=5 n=6
0.001 5.783493 2.642704 1.841670 1.515589 1.349575
0.01 3.303619 1.877180 1.466905 1.291218 1.199412
0.03 2,5505%94 1.615244 1.332403 1.208783 1.143513
0.10 1.943219 1.388995 1.213099 1.134718 1.092931
0.30 1.539364 1.229063 1.126802 1.080553 1.055714
1.0 1.217626 1.094868 1.053002 1.033815 1.023442




For a lowpass filter, w is similarly defined. Assume that a lowpass filter passes all fre-
quencies out to Wa = 21rBa rad/sec and there has a transmission that is @ dB below the peak
value. If the reference lowpass transfer function is a dB below its peak value at a frequency of
Ba rad/sec, then Eq. (2-8) is the proper definition for w in the lowpass case also.

Thus, if a Butterworth filter is required to have a 3-dB bandwidth of W3 rad/sec, then
Ba = 133 =41and w = W3 with the lowpass normalization used here, If a Chebyshev filter is re-
quired to have an equal-ripple bandwidth of Wy rad/sec, then Ba = B_y =4andw=W_ . For
Chebyshev filters another often used bandwidth specification is the 3-dB bandwidth; for the
calculation of w in this case, B3 for the Chebyshev characteristic is required. It is given by

B, = cosh(X cosh™ 1) | (2-9)
In Table VIII, values of 33 are given for n = 2 through 6 and fory = 10 log (1 + ez) = 0.004, 0.014,
0.03, 0.10, 0.30 and 1.0dB.

A Bessel filter (as normalized here) does not have a uniform bandwidth; its bandwidth for
a up to 7.5dB can be found on the expanded attenuation plot in Fig. 9.

For bandwidth specifications other than those discussed above, ﬁa can be found with little
difficulty for Butterworth and Chebyshev filters by direct calculation using Egs. (2-1) and (2-3).
For Bessel filters one must resort to tables of spherical Bessel functions as discussed by

Weinberg7.

C. FREQUENCY CHARACTERISTICS

The attenuation AL(Q), phase ¢L(Q), and group delay -rL(Q) of Butterworth, Chebyshev,
and Bessel transfer functions [Egs. (2-2), (2-6), and (2-7), respectively] are given in Figs. 1
through 23,

D. TRANSIENT RESPONSES

Figures 24 through 39 show the unit impulse response, hL(t) = 2-1 [t(A)], and the unit step
response, g (t) = ¢! [7\-1‘:(7\)], of the various transfer functions where £~ ! indicates the inverse

Laplace transformation.
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Fig. 2. Chebyshev attenuation characteristics

for 0.001-dB ripple.
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Fig. 1. Butterworth attenuation characteristics.

Q (rad/sec)
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Fig. 3. Chebyshev attenuation characteristics

for 0.01-dB ripple.
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Fig. 4. Chebyshev attenuation characteristics
for 0.03-dB ripple.




A(2) (db)

Fig. 6. Chebyshev attenuation characteristics

for 0. 3-dB ripple.
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Fig. 5. Chebyshev attenuation characteristics
for 0.1-dB ripple.
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Fig.7. Chebyshev attenuation characteristics
for 1.0-dB ripple.
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Fig. 8. Bessel attenuation characteristics.
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Fig. 9. Bessel attenuation characteristics for the pass band.
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Fig. 10. Butterworth phase characteristics.
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Fig. 11. Two-pole Chebyshev phase
characteristics.
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Fig. 12. Three-pole Chebyshev phase
characteristics.
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Fig. 14. Five-
characteristics.
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Fig. 13. Four-pole Chebyshev phase
characteristics.
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Fig. 15. Six=pole Chebyshev phase
characteristics.

Q (rad /sec)

0 ' 20

A7

Q (rod /sec)

Fig. 16. Bessel phase characteristics.
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Fig. 18. Two-pole Chebyshev group delay
characteristics.

Fig. 17. Butterworth group delay
characteristics.
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Fig. 19. Three-pole Chebyshev group
delay characteristics.
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Fig. 20. Four-pole Chebyshev group
delay characteristics.
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Fig. 21. Five-pole Chebyshev group
delay characteristics.

0 10 20 ‘ 30
Q (rad /sec)

Fig. 22. Six-pole Chebyshev group
delay characteristics.
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Fig. 23. Bessel group delay characteristics.
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Fig. 24. Impulse response of Butterworth filters.
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Fig. 25. Impulse response of Chebyshev filters with 0.001-dB ripple.
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Fig. 26. Impulse response of Chebyshev filters with 0.01-dB ripple.
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Fig. 27. Impulse response of Chebyshev filters with 0.03-dB ripple.
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Fig. 28. Impulse response of Chebyshev filters with 0.1-dB ripple.
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Fig. 29. Impulse response of Chebyshev filters with 0.3-dB ripple.
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Fig. 30. Impulse response of Chebyshev filters with 1.0-dB ripple.

24




(o] 1.0 20 ic 40
t (sec)

Fig. 31. Impulse response of Bessel filters.
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Fig. 32. Step response of Butterworth filters.
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Fig. 33. Step response of Chebyshev filters with 0.001-dB ripple.
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Fig. 34. Step response of Chebyshev filters with 0.01-dB ripple.
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Fig. 35. Step response of Chebyshev filters with 0.03-dB ripple.

t (sec)

Fig. 36. Step response of Chebyshev filters with 0.1-dB ripple.
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Fig. 37. Step response of Chebyshev filters with 0. 3-dB ripple.
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Fig. 38. Step response of Chebyshev filters with 1.0-dB ripple.
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Fig. 39. Step response of Bessel filters.
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IlI. GUIDE TO DESIGN OF UNIFORMLY LOSSY FILTERS

In this section we outline the design of narrow bandpass, lowpass, and wide bandpass filter
circuits based on the normalized design parameters. For narrow bandpass filters, three circuit
configurations are considered, and for lowpass and wide bandpass filters one configuration for
each is considered. In all instances, simple relationships between the circuit element values and
the normalized design parameters are given.

Normalized design parameters are the coupling coefficients between adjacent parts of the
network (kj, j+1)‘ the parasitic (or unloaded) dissipation factor of the uniformly lossy circuit
elements a, and the loaded dissipation factors at the source and load ports of the filter (d and
8, respectively). The information is presented in the following form: families of curves of the
k's and 6 as functions of d are given, with a as the parameter of the families. From this
information and the desired bandwidth and center frequency, the actual circuit parameters can
be determined. Also given in the same format are curves of the normalized gain parameter T,
from which the transfer function of a filter at its center frequency is determined. Since T gives
the gain of bandpass filters at their center frequency and that of lowpass filters at zero frequency,
this is also the peak value for Butterworth, Bessel, and odd-order Chebyshev filters. For even-
order Chebyshev filters, the gain at a valley in the pass band is obtained, which must be multi-
plied by N1 + €° to obtain the maximum gain. Values of N1 + € are given in Table IX.

TABLE IX
VALUES OF VARIOUS USEFUL FUNCTIONS OF e
. =100 _, i+ 2210720 ‘

0. 001 0. 00023 028502 1.00011 51358 0.01517 51448
0.01 0. 00230 52381 1.00115 19555 0.04801 2895
0.03 0.00693 16689 1.00345 985 0.08325 6644
0.10 0. 02329 29923 1.01157 945 0. 15262 042
0.30 0.07151 93052 1.03514 217 0. 26743 094
1.0 0.25892 54118 1.12201 845 0. 50884 714

The design is based on reducing the actual filter specifications to those of an equivalent
lowpass filter of unity bandwidth. This is accomplished by frequency transformations between
the lowpass frequency Q and the actual frequency w that are discussed below. By using these
transformations the attenuation, phase, and delay of the actual filter can be found from the corre-
sponding characteristics of the equivalent lowpass filter. Likewise, transient responses of low~-
pass and narrow bandpass filters can be found from those of the equivalent lowpass filter.

A. NARROW BANDPASS FILTERS

For narrow bandpass filters the normalizing factor p is the ratio of bandwidth (w = 27b
rad/sec) to the center frequency (wg = 27f, rad/sec):

31




en=2 o8 (3-1)
wo 1o
The transformation between the actual frequency w and the normalized frequency Q is
claity — @ ) =2t —

Q= (w wo)-b(f ) - (3-2)
Thus, the actual attenuation, phase, and delay are

Alw) = A; (@) (3-3)

o(w) = ¢y (2) (3-4)

2
T(w) = TL(Q) . (3-5)

The attenuation is usually needed to determine the complexity of the filter.

Three different realizations of three-pole narrow bandpass filters are shown in Figs. 40-42,
and the relationship between the design parameters and the circuit element values is given in
each case. In Fig. 40 the circuit has three reactively coupled, parallel resonant circuits; in
Fig. 41 the circuit has three reactively coupled, series resonant circuits; and in Fig. 42 the
circuit is a combination of the previous two. For filters with n poles, n coupled resonant
circuits must be used in the realization; the design parameters for an n-pole filter follow the
pattern illustrated in the examples for three poles. In all cases the self-admittance of each
node and the self-impedance of each loop must be resonant at the center frequency, but whether
a coupling reactance is capacitive or inductive is up to the discretion of the designer.

An important fact to observe about these circuits is that the self-admittance of any node is
independent of that of the others, as is the self-impedance of the various loops. Thus, the L's
and C's can be chosen to be convenient values, e.g., all Li's in Fig. 40 or in Fig. 41 can be the
same value. In Fig. 42, the coupling coefficient k23 imposes a relation between L2 and L3, but
otherwise in a circuit of this sort the L's are unrestricted,

If a coupling reactance is inductive, the resulting m or T of inductors can be converted
into a transformer by the equivalent circuits and the equations relating their parameters as
shown in Fig.43. For example, if the 7 of inductors (LZ’ L3, L23) in Fig. 40 or the T inductors
(L,, L3, Ly3) in Fig. 41 is converted into a transformer, the coupling coefficient K of that trans-
former is equal to pk23.

The envelope of the response of a narrow band filter to a unit impulse or a suddenly applied
unit amplitude sine wave of frequency fo can be found in terms of hL(t) and gL(t), respectively.
Papoulis (Ref. 14, p.124) has shown that if a narrow band transfer function is symmetric in
amplitude about its center frequency, then the envelope of its unit impulse response is equal to
two times the unit impulse response of the equivalent lowpass filter. The narrow band filters
considered here have transfer functions whose behavior about the center frequency wq is given
by Egs. (B-17), (B-20), and (B-28). By applying Papoulis' result to these transfer functions it
is found that the envelope of the unit impulse response of these filters is

2r
hepo(t) = SF (5 t) (3-6)
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for Butterworth, Bessel, and odd-order Chebyshev filters, where

NC11C33

for Figs. 40, 41, and 42, respectively. For even-order Chebyshev filters it is

_Q.} 2
henv(t) s 1+ €"h

Similarly, the envelope of the response of a narrow band filter to a suddenly applied sine wave

LEY - (3-7)

of frequency fo is

Benvit) = ;rlf‘- g, (%t) (3-8)

for Butterworth, Bessel, and odd-order Chebyshev filters. For even-order Chebyshev filters
it is

t) =er—, N g, Ev . (3-9)

genv

B. LOWPASS FILTERS

For lowpass filters the normalizing factor for the data is just the bandwidth w = 27b, and

the transformation between @ and w is
Q=w/w=1f/b . (3-10)

Thus, the actual attenuation, phase, and delay are

Aw) = A; () (3-11)
Plw) = ¢ (2) (3-12)
T(w) =iw T,@) . (3-13)

Three- and four-pole, polynomial type lowpass filters are shown in Figs. 44 and 45, re-
spectively, and the relationship between the design parameters and the circuit element values
is given.* These examples illustrate the definitions of the normalized coupling coefficients and

dissipation factors for lowpass filters with either an odd or an even number of poles. Thus for

*Ordinarily, the dissipation factor of inductors is somewhat greater than that of capacitors, so in order to have
uniform dissipation, loss (in the form of shunt resistors) must be added to the capacitors. In principle this is
undesirable because of the additional transmission loss introduced. However, by incorporating with the source
resistance Gg that part of G not associated with the parasitic dissipation of Cy, the increase in transmission
loss is minimized. For n even this can be done at only one end of the network, but for n odd both ends of the
network can be treated in this way. Often capacitor losses are negligible, therefore the work of GeffelS and
Orchard16 concerned with predistortion for singly loaded, lossy~L networks is of interest. For doubly loaded
networks with unequal but uniform dissipation in inductors and capacitors, the analytical work is considerably
more difficult (see Desoer, 17 Ming, 18 and Belevitch, et al.19), so that in a practical sense the small additional
loss required by a design assuming uniform loss in all reactances is well worth the savings in computation. This
will no longer be true when a computer program is available for doing this more difficult design.
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any value of n and for the dual circuits, the expressions for the design parameters can be found
easily from the pattern in these examples.

Unit impulse and unit step responses of the actual lowpass filter are obtained easily from
those of the normalized lowpass filter by applying the scaling theorem of Fourier integral theory
(Papoulis,14 p.- 14). This theorem states that if F(w) and f(t) are a Fourier transform pair, then
F(w/a) and |a| f(at) are also. Thus the unit impulse response of a lowpass filter of bandwidth

w is
—L—h (wt) for BU, BE and CH with n odd.
Cicn
—L _ h, (wt) for BU and BE with n even.
ht}=y [C, L -
1 n
' 2
I‘—1+—€—hL(wt) for CH with n even. (3-14)

Q
-

-
=1

By integrating these expressions we obtain the unit step response of a lowpass filter.

(wt) for BU, BE and CH with n odd.

£
o
c

3]
»-O o} u-no !
c (@]
') e o]

gL(wt) for BU and BE with n even.
glt) =4

SN gp (wt) for CH with n even. (3-15)

@]

-
c

n

\

Note that for n odd the response is the output voltage, and for n even the response is the output

current. In any case the input is a current source,

C. WIDE BANDPASS FILTERS

For wide bandpass filters the normalizing factor is the bandwidth w = 27b = Wy, —w, =
21r(f2 - fi)' when the pass band extends from wy = 21rf1 tow, = 21rf2. The transformation petween

Q and w is

w w
o 0f w 0
¢ ‘T(G"‘T) .
0
where the center frequency wo = 27rf0 is the geometric mean of W, and Wyl W E Jw,w,. The

actual attenuation, phase, and delay are

Aw) = A (2) (3-17)

o) = ¢ () (3-18)
1 wo®

T(w) = <1 + wLZ>TL(m : (3-19)
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A wide bandpass filter of bandwidth w is derived from the equivalent lowpass filter of band-
width w. The lowpass circuit is modified as follows. In series with each inductance of L
henrys place a capac1tance of i/w L farads, and in parallel with each capacitance of C farads

place an inductance of 1/w C henrys The resulting L-C pairs are resonant at w In theory

the added reactances must be lossless, but in practice loss in all reactances can b% tolerated.
If the normalized dissipation factors of the resonant circuits are equal and are smaller than
1/5 a ax (amax is the largest value of a in a particular set of curves), the resulting pass-band
distortion is negligible for most applications ¥ The design is summarized in Fig. 46.

In general, the transient response of a wide bandpass filter cannot be related to hL(t) or

gL(t), so each transient must be handled individually.

D. SUMMARY

To close the discussion it is worthwhile to outline a general scheme to be used in the design

of any of the various filter types and then illustrate by an example.

(1) Determine w or b as discussed in Sec.II.

(2) Convert the specifications to those on an equivalent lowpass filter by
normalizing the frequency scale according to Eq. (3-2), (3-10), or
(3-16).

(3) Determine n from the required attenuation or other specification.

(4) Make a tentative selection of components and determine the normalized,
unloaded dissipation factor, a.

(5) For the appropriate set of curves, choose a value of d which, with the
above value of a, determines 8, the k's, and I'. To minimize the
sensitivity of the filter to errors in the circuit element values, operate
where the curves have the least slope.

(6) Compute circuit component values according to the figure that applies
to the circuit being designed.

(7) Determine whether the circuit is satisfactory. If not, select new com-
ponents in step (4) or make any other change that seems feasible and
repeat the above steps.

(8) Construct and align according to Appendix A.
The following example illustrates this scheme for the design of a narrow band filter.

Example: A Chebyshev filter with a center frequency of 50kHz and a ripple bandwidth
of 2.0kHz is required, and the ripple is to be y = 0.3dB. The attenuation should be greater
than 40dB for f £ 45 and f 2 55kHz. The circuit is to be that of Fig. 40 with capacitive coupling.
According to the above scheme the design proceeds as follows.

(1) Since the ripple bandwidth is specified, /3 = ﬁ = 41 and b = 2 kHz.

(2) The frequency transformation of Eq. (3-2) is then & = (f — fg) X 1073
So the frequencies 45and 55kHz correspond to € = £5 rad/sec.

(3) We see from the attenuation curves for a CH filter with @ = 0.3 dB
that AL(S) = 42dB for n = 3, Thus for this filter we have n = 3.

(4) Identical inductors of 0.56 mH are selected. These are made using a
type 1811P-A160-3D3 Ferroxcube pot core wound with 59 turns of
61/44 litz wire. The tuning capacitors are to be polystyrene resulting
in Qg = 400 at 50 kHz. The total resonating capamtance is Cq = 18.1 nF.
Smce p = b/fy = 0.04, then a = 1/pQ = 0.0625, which is considerably
less than A ax for the CH 3-0.3 f11ter

*|n this case the dissipation in each tuned circuit can be divided arbitrarily between the inductor and the
capacitor.
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(5) We continue and choose d = 0.5. Then from the curves we read the

values:
6 = 0.897
k12 = 0.822
k23 = 0.775
I'= 0.680

(6) Our circuit is shown in Fig. 47, and the circuit element values are
computed according to Fig. 40.

Cyz = PCokyp = 595PF
Cy3 = pCpkyg = 561 pF
Ci = CO—C12 ~ 17.5nF
2= CO_C12—C23 = 17.0nF
3= Co— C23 ~ 17.5nF
Rs = FC;(d‘—_a) = 8.19kQ
R L - 5.27kQ

17~ 27bC (6 — a)
The transfer impedance at 50kHz is

Eq

I

(7) The component values are satisfactory so the design is complete.

T

= 2_1rbC_O= 3.01kQ

The filter was constructed and aligned according to the method outlined in Appendix A. Its
transfer impedance at 50kHz was measured as 2.86k® which is a 5-percent error compared to
the theoretical value of 3.01 k2. Its measured amplitude vs frequency response is shown in
Fig.48. The pass band is quite close to the designed behavior, but the skirts are a bit unsym-
metrical. The attenuation on the low frequency side of the pass band increases at a slightly
higher rate than that on the high side because of the zeros of transmission at zero frequency
and the cluster of three poles in the vicinity of —50 kHz. Since the circuit has capacitive coupling,
there are five transmission zeros at w = 0. If we approximate the effect of the poles by assuming
that they are concentrated at —50 kHz, then the overall distortion caused by these three poles and
five zeros relative to that at 50kHz is given by the factor (1—+—2f75—0)3 (%)5, where f is in kilo-
hertz. If the effect of this factor is removed from the measured curve in Fig. 48, the pass band
is essentially unchanged, but the skirts are shifted to pass through the squares. The shifted
curve (which is the response of the three poles in the vicinity of 50 kHz) is nearly symmetric*
and is in close agreement with the theoretical curve, AL(f — 50), (17dB at 48 and 52kHz, 42dB
at 45 and 55 kHz, and 60.5dB at 40 and 60 kHz). Thus, the amount of skewing can be predicted
quite accurately. Note that skewing can be controlled to some extent by changing the kind of
coupling reactances that are used, thereby changing the number of transmission zeros at zero
frequency. In the above circuit, for example, if one coupling reactance were capacitive and the
other inductive, there would be three transmission zeros at zero frequency. The skewness would
be less than 1 dB at 40 and 60 kHz.

*Within the accuracy of the narrow band design, the poles are placed symmetrically about the line s = ¢ + i vg
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Normalized coupling coefficients (p = w/mo = b/fo):
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where

C” = self~capacitance of node 1= CI + C12

C22 = self-capacitance of node 2 = C2 + C]2

Ly Lyg

Lty
L3 Lys

L3+ Ly

L22 = self-inductance of node 2 =

L33 = self-inductance of node 3 =

Normalized parasitic dissipation factors:

r g
(W+ C) fori=1,2, and 3

(A]

..._o._
a= =

o=

1
7,.Q—0
where D0 = QO-] is the parasitic dissipation factor of a tuned circuit.
Source and load conductances:

Gs = wC”(d —a) aoand G, = wC33(8 —a)

Transfer impedance at Wyt

B ___x
I]

w=wg Vv C”C33

Fig. 40. Network (using coupled parallel resonant circuits) and equations for realization
of three=pole narrow bandpass filter.
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Normalized coupling coefficients (p = w/v.)0 = b/fo):

S a2 Ls

k., = and k
12 23
12 P/ Laslos

where
CIC'IZ
C” = self-capacitance of loop 1 = T
1 12
G2
C22 = self-capacitance of loop 2 = -Cz"'—cu)

L22 = self-inductance of loop 2 = L2 + L23
L33 = self~inductance of loop 3 = L:3 + L23

Normalized parasitic dissipation factors:

r 9
u=_=_=_(u_L.+UC.) fori='|,2,cmd3

o
o

where D0 = Qo-] is the parasitic dissipation factor of a tuned circuit,
Source and load resistance:

Rs = wL] ](d —-a) and R,= wL33(8 —a)
Transfer admittance at vyt

]
E

1

W=

Fig. 41. Network (using coupled series resonant circuits) and equations for realization
of three-pole narrow bandpass fil.er.
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Normalized coupling coefficients (p = w/m0 = b/fo):
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where
C” = self-capacitance of node 1 = C] + C]2
C22 = self-capacitance of node 2 with loop 3 open = C2 + C]2

L22 = self-inductance of node 2 with loop 3 open = L2

L33 = self-inductance of loop 3 with node 2 shorted = L3

Normalized parasitic dissipation factors:
D r. g.
e=-0-_1 _ (_' t el ) fori=1,2, and 3
P w

uOCi

Source conductance and load resistance:

Gs=wC”(d—a) and Rl=wL33(8—a)

Current transfer ratio at W

s
h

u=uo 11 "33

Fig. 42. Network (using coupled parallel and series resonant circuits) and equations for realization
of three-pole narrow bandpass filter.
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Fig. 43. Equivalent circuits for conversion of a T or n of inductors into a transformer.
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Fig. 44. Three-pole, polynomial type lowpass filter
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Source conductance and load resistance:
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Current transfer ratio at DC:
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Fig. 45. Four-pole, polynomial type lowpass filter.
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Fig. 46. Wide bandpass filter derived from four-pole lowpass filter of Fig.6.
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IV. DESIGN DATA

In this section we present the design data in Figs. 49-167 in order of increasing filter com-
plexity (n = 2 through 5 poles). For each value of n the data are arranged according to type of
transfer function in the order Butterworth, Chebyshev, and Bessel. For Chebyshev filters the
data is given in order of increasing passband ripple.

Fig. 49. BU2; §, k12' ond T.
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Fig.50. CH2; §, k;,, ond T.

46




Fig. 51. BE2; &, k,, andT.
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Fig.56. CH3-0.01, 6.
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Fig. 58. CH 3-0.01,

k23.
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Fig. 59. CH3-0.01,T.
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Fig. 61. CH3-0.03, k, .
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Fig.64. CH3-0.1, 6.
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Fig. 68. CH3-0.3, 5.
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Fig. 70. CH3-0.3, ky,.
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Fig. 80. BU 4, 6.
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